72 research outputs found

    Wavelet and Multiscale Methods

    Get PDF
    Various scientific models demand finer and finer resolutions of relevant features. Paradoxically, increasing computational power serves to even heighten this demand. Namely, the wealth of available data itself becomes a major obstruction. Extracting essential information from complex structures and developing rigorous models to quantify the quality of information leads to tasks that are not tractable by standard numerical techniques. The last decade has seen the emergence of several new computational methodologies to address this situation. Their common features are the nonlinearity of the solution methods as well as the ability of separating solution characteristics living on different length scales. Perhaps the most prominent examples lie in multigrid methods and adaptive grid solvers for partial differential equations. These have substantially advanced the frontiers of computability for certain problem classes in numerical analysis. Other highly visible examples are: regression techniques in nonparametric statistical estimation, the design of universal estimators in the context of mathematical learning theory and machine learning; the investigation of greedy algorithms in complexity theory, compression techniques and encoding in signal and image processing; the solution of global operator equations through the compression of fully populated matrices arising from boundary integral equations with the aid of multipole expansions and hierarchical matrices; attacking problems in high spatial dimensions by sparse grid or hyperbolic wavelet concepts. This workshop proposed to deepen the understanding of the underlying mathematical concepts that drive this new evolution of computation and to promote the exchange of ideas emerging in various disciplines

    Real Algebraic Geometry With a View Toward Moment Problems and Optimization

    Get PDF
    Continuing the tradition initiated in MFO workshop held in 2014, the aim of this workshop was to foster the interaction between real algebraic geometry, operator theory, optimization, and algorithms for systems control. A particular emphasis was given to moment problems through an interesting dialogue between researchers working on these problems in finite and infinite dimensional settings, from which emerged new challenges and interdisciplinary applications

    Non-acyclicity of coset lattices and generation of finite groups

    Get PDF

    Bibliographie

    Get PDF

    Data-driven shape analysis and processing

    Get PDF
    Data-driven methods serve an increasingly important role in discovering geometric, structural, and semantic relationships between shapes. In contrast to traditional approaches that process shapes in isolation of each other, data-driven methods aggregate information from 3D model collections to improve the analysis, modeling and editing of shapes. Through reviewing the literature, we provide an overview of the main concepts and components of these methods, as well as discuss their application to classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing

    Some models are useful, but how do we know which ones? Towards a unified Bayesian model taxonomy

    Full text link
    Probabilistic (Bayesian) modeling has experienced a surge of applications in almost all quantitative sciences and industrial areas. This development is driven by a combination of several factors, including better probabilistic estimation algorithms, flexible software, increased computing power, and a growing awareness of the benefits of probabilistic learning. However, a principled Bayesian model building workflow is far from complete and many challenges remain. To aid future research and applications of a principled Bayesian workflow, we ask and provide answers for what we perceive as two fundamental questions of Bayesian modeling, namely (a) "What actually is a Bayesian model?" and (b) "What makes a good Bayesian model?". As an answer to the first question, we propose the PAD model taxonomy that defines four basic kinds of Bayesian models, each representing some combination of the assumed joint distribution of all (known or unknown) variables (P), a posterior approximator (A), and training data (D). As an answer to the second question, we propose ten utility dimensions according to which we can evaluate Bayesian models holistically, namely, (1) causal consistency, (2) parameter recoverability, (3) predictive performance, (4) fairness, (5) structural faithfulness, (6) parsimony, (7) interpretability, (8) convergence, (9) estimation speed, and (10) robustness. Further, we propose two example utility decision trees that describe hierarchies and trade-offs between utilities depending on the inferential goals that drive model building and testing

    Interview with Endre Szemerédi

    Full text link

    Symmetry in 3D shapes - analysis and applications to model synthesis

    Get PDF
    Symmetry is an essential property of a shapes\u27 appearance and presents a source of information for structure-aware deformation and model synthesis. This thesis proposes feature-based methods to detect symmetry and regularity in 3D shapes and demonstrates the utilization of symmetry information for content generation. First, we will introduce two novel feature detection techniques that extract salient keypoints and feature lines for a 3D shape respectively. Further, we will propose a randomized, feature-based approach to detect symmetries and decompose the shape into recurring building blocks. Then, we will present the concept of docking sites that allows us to derive a set of shape operations from an exemplar and will produce similar shapes. This is a key insight of this thesis and opens up a new perspective on inverse procedural modeling. Finally, we will present an interactive, structure-aware deformation technique based entirely on regular patterns.Symmetrie ist eine essentielle Eigenschaft für das Aussehen eines Objekts und bietet eine Informationsquelle für strukturerhaltende Deformation und Modellsynthese. Diese Arbeit beschäftigt sich mit merkmalsbasierter Symmetrieerkennung in 3D-Objekten und der Synthese von 3D-Modellen mittels Symmetrieinformationen. Zunächst stellen wir zwei neue Verfahren zur Merkmalserkennung vor, die hervorstechende Punkte bzw. Linien in 3D-Objekten erkennen. Darauf aufbauend beschreiben wir einen randomisierten, merkmalsbasierten Ansatz zur Symmetrieerkennung, der ein Objekt in sich wiederholende Bausteine zerlegt. Des Weiteren führen wir ein Konzept zur Modifikation von Objekten ein, welches Andockstellen in Geometrie berechnet und zur Generierung von ähnlichen Objekten eingesetzt werden kann. Dieses Konzept eröffnet völlig neue Möglichkeiten für die Ermittlung von prozeduralen Regeln aus Beispielen. Zum Schluss präsentieren wir eine interaktive Technik zur strukturerhaltenden Deformation, welche komplett auf regulären Strukturen basiert
    • …
    corecore